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Abstract terms of the Mathieu functions with complex argument [24].
Recently, Amendola outlined the theory for the computation

The aim of this paper is to outline the theory for calculating of Mathieu functions of complex order by applying the
the angular and radial Mathieu functions of complex Floquent theory [27]. Unfortunately, there are no
arguments. These functions are required for the computation numerical results for these functions given in the literature.
of analytic solutions of electromagnetic scattering by lossy In this paper, the solution presented in [15] is extended to
dielectric elliptic cylinders and waveguides. The account for the characteristic values (eigenvalues) of
backscattered echo width of a lossy dielectric elliptic Mathieu functions of complex argument. Once the
cylinder is compared with the special case of lossy circular characteristic values are computed, the complex Fourier
and weakly lossy elliptic cylinders and excellent agreement coefficients of the Mathieu functions can be obtained. These
is obtained in all cases. Tabulated and plotted numerical coefficients are needed to compute the angular and radial
results of typical Mathieu functions are presented. Mathieu functions of complex arguments and their

derivatives as will be shown.
1. Introduction

2. Theoretical Background
Many engineering and physics applications involve the
solution of structures with elliptical geometries. Analytic The homogeneous wave equation (Helmholtz) in elliptical
solutions to such structures require the computation of coordinates u, v, and z is given by
angular and radial Mathieu functions in the elliptical 1 D2__ a_ 2
coordinate system. Examples of such applications are the 1 + +=0 (1)
solution of elliptical waveguide problems [1-5], optical F 2(cIsh2 uV- cosh2 v) Lu 3v j±[az+ =
fibers [6], and elliptical loaded horn and corrugated The elliptical coordinate system (u,v,z) is defined in terms of
elliptical horn antennas [2], field prediction inside lossy the Cartesian coordinate system (x,y,z) by
elliptic cylinders for biological body modeling [7], and x = F cosh(u) cos(v) and y = F sinh(u) sin(v), where F is
scattering by mutilayered dielectric elliptic cylinders [8-12]. the semifocal length of the elliptical cross section.
Furthermore, analytical solutions are generally needed to Assuming no variation of the function W along the z-axis,
check the accuracy of numerical or approximate solutions.
Over the years many algorithms and programs have been the z-derivative in (1) will drop out. The resulting
developed to address the problem of computing Mathieu differential equation can be separated into the following
functions of integer and real arguments [4], [13-221. differential equations in terms of U(u) and V(v). The
However, none of these publications have addressed the circumferential (ordinary) Mathieu's differential equation is
more general problem of computing the angular and radial d2V/dv2 + (a- 2q cos 2v)V = 0 (2)
Mathieu functions of complex arguments. Caorsi et. al. and the radial (modified) Mathieu's differential equation is
have computed the solution of electromagnetic scattering by d2U / du2 - (a- 2q cosh 2u)U = 0 (3)
weakly lossy multilayer elliptic cylinders using first-order
truncation of the Taylor expansion of each Mathieu function where q = (kF)2 

= q, +Jql , k = o), 4ue and eI =ei -JE1"

[23-24]. The same authors have presented the solution of the It can be shown that there is a countable set of characteristic
scattering of an electromagnetic wave by a lossy dielectric values of a, for which the solutions are nt or 27r periodic.
elliptic cylinder based on the exact Fourier series solution in

1054-4887 © 2002 ACES
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One can easily distinguish between four kinds of
characteristic values (eigenvalues) [15]: [1+q q 0
a = a2r (q), even solution, period n jq 9 q 01
a = a2,+, (q), even solution, period 2n .. (6)

a = b2,+2 (q), odd solution, period r[ 0 q (2m +1)2

a = b2,+1 (q), odd solution, period 27c
r = 0,1,2,... In calculating the eigenvalues and Fourier coefficients, it is

For every characteristic value, the solution of (2) can be necessary to truncate the matrix after a finite number of
given as a Fourier series: columns and rows to obtain the required accuracy.IrOnce the coefficients A2r , •* A r1,B2r+2 , B2r+1 r

Se~r (~q) = 2• "2m' "2m41 ' •2m+2, U2m+l are
Se 2 (v, q) A2m cos 2mv (4a) 2

m 
2
m+

1  2
m+

2  2 '+
M,=0 determined using the routine DEVCCG from Microsoft

Se2r (v, q) = j Ar+1 cos(2m +l)v (4b) IMSL Math Libraries, the angular Mathieu functions in
S0 q 2m+1 equations (4) as well as their respective derivatives can be

_=2r+2 calculated. Next, we compute the radial Bessel functions of
So 2r+2 (v, q) = n2 m the first and second types using equation (3) along with the

,,1=0 previously computed Fourier coefficients. The equations

So2r 1 (v, q) "- XB2r+, sin(2m +1)v (4d) used for the computation of the even and odd functions of
m=o the first type are

Where the A's and B's are complex Fourier coefficients. For M , 2r 2r
computing the Fourier coefficients, one has to obtain first J12,(u,q) = (--I / Y- X(-1)m Ajm )Jm (x,)A0 (7)

the characteristic values. , ,r 0
Substitution of the series (4a), (4b), (4c), and (4d) in the Je2r+, (u,q)= (-2)rx/-7-

differential equation (2), yields four sets of equations for (M A+ 1  J 2 , (8)(-.-I) A" +1t [.+, (x )Jm(X2) +Jm(X,)J,.+ (X2)]/Alf' 8

computing the Fourier coefficients: m=o

a2r -q 0 4rJ 0 2r (u, q) (I)r Nrr/ 2
-2q a 0r-4 -q A,2 r M (9)

a 2 ,. 1 ---qqq 0

0-q (a aO-2mmLA, B2..2r 1q) = (-1) - (2-+ (I)- (2AB

m2 
2r~

-q a2,.+t -9 - q A3' (b)q
0 0 0 where x, = 2-eu,x 2 =-e .

-q2 2
"we obtain the even and odd radial functions of the second0 q a~+1 (2 + 1) 2 r[A2-

0 -q a2"+-(2m+) 2 .A-•,2- type as follows

40Y,2, (u, q) y ( _)r /2 (-)' A2r mY.y(x, )dm(x 2)/Aor (11)

-q b2r,, - 16 -q B41,2  (5c) Y12,+,(u, q)= 1_l)r -- 2
"0 0. 0 Af 2+1 y2+1 (12)-_q -(-1) mA2..+,[ ,+,(xý)J m.(x2)+Y,.(xý)J .+,(x2)]/AI

-=O
0 q b2r+2 -(2m + 2) .BZ-_ Y(u, q) = (-l'[% / 2

M (13)-~~ ~ 2r+B l B2
b,,, -I-q -q 0 BI 1(-) = +,(Xvo-,(X)-Jo+,(X)r=,(X)11

- q b2-1 -9 -q B3 ,+ (5d) =
"0 0 =0 Yo2 +, (u, q) = /2 (14)

• •M (14)
o .; -, 2(_l)m B2,•+1 [y,.(x,)J, (x2 ) _,(x,)g.+i (x2 )] / B2r+1

0 -q b,,+,-(2m+2)JB 2-1,J2m+1

Numerical results for the derivatives, with respect to q, of
We shall now show the computation of a2r.1 in (5b). All the even and odd angular and radial Mathieu functions are
other characteristic values can be calculated in exactly the obtained using the equations given in [14-17].
same way. It is clear from (5b) that a2r-, can be seen as the
eigenvalues of the infinite tridiagonal matrix,
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3. Electromagnetic Scattering by a Lossy Dielectric = X Ce"Re$ (c' 0)Sem (c1 ( 20) +
Elliptic Cylinder ) (c)

Consider the case of a linearly polarized electromagnetic "=1

plane wave incident on a lossy dielectric elliptic cylinder (of where c1 = kjF is complex, and k, = o/ f•1-e•

permeability i , permitivity e and conductivity a ) at an eI = e1 -jA 1, C,,, and Corn are the unknown transmitted
angle Oi measured with respect to the x axis as shown in field expansion coefficients. The magnetic field component
[25]. The electric field component of the TM polarized inside and outside the cylinder can be obtained using
plane wave of amplitude E0 is given by Maxwell's equations, i.e.

E =- Eoe jkpcos(0-0) (15) H. --j DE (21)

where k0 is the wave number in free space. The incident (/ti~h Dv

electric field may be expressed in terms of Mathieu H, - -j aE, (22)
functions as follows copWh Du

E. = Ae,.R(')(co,,)Sem(co,,1)+ h = F cosh 2 u - cos' v (23)"M=o (16) The unknown expansion coefficients can be obtained by
j A.R,,") (co,ý)Som (co, 17) imposing the continuity of the tangential field components
M=1 at surface of the cylinder x , i.e.

Aem = E0j" e (Sm(CosO,) (17) (4,o mN ,( .. o m Y M nn= oc 0 B RlrR me" (c °. , ) R ,e"( c.4 ) R eC O ) c ,,2 ( (24)
N ((=[SC B(C, 77)]'2 dV 1) Re,

N ý C 1 ) = i M . C 1 .A R ,e ( Com ) ( ,,ý ) / j ,r R ,( . ( C o . , lom 0 o om =o- (I, Ii em

where =coshuand r7=cosv, co=koF, F is the '
semifocal length of the elliptical cross section, Sem, XMo,,m(cI,co)Bom.,R(

4)'(Col) o(4 0 ,, R#R(C,1 ). ---

while So, are the even and odd angular Mathieu functions of M=1 I o,, ,•lj (25)

order m, respectively, R(1) and R()' are the even and odd M n(cj,C,)Aom R.(.)c, Ro,2? ( #,.Ro) lem = , Rr, o o ,O , (cl , (C04R1)m(,]
radial Mathieu functions of the first kind, and Nem and 'r=o [ Io,,c 1,4l)

Nom are the even and odd normalized functions. Menm (co, c) = JSem (c1, 1r)Se,, (C0o, 1)dv (26)
O"M 0 0m on

Electric field expansion inside and outside the lossy where u, is the relative permeability of the dielectric
dielectric cylinder can be obtained by solving the Helmholtz
equation in the elliptical coordinate system using the region. The TE scattering by a lossy elliptic cylinder is also
separation of variables technique. The scattered electric presented. In this case a derivation dual to that of the TM
field outside the elliptic cylinder for ( > l) can be case leads to the following solution [25]

(4)' (4) (CO ý1 (qn'-•,1|expressed in terms of a sum series of Mathieu and modified I Me,,.(c,co)B2 e•R(4 (Co, l)-R, (Co, M , t (,•) 1
Mathieu functions as follows e=0 R(])c (q, =)ES- •'Be,,R4) (Co, )e(C.,r) (']27

" m=o (c0, ~)Sern (c0, 17) +(19) Z Menm(CiCo)Aern R•,.(Co, )) en grR~e ( 27)
M=oRo4, (C., ý)So (Co,17 M= A. ',,ý, R,, (q,_

T~R(,4)' DýlR(4m)(Co.•'•P")n ( 1 -l)]

where Bem and Bor, are the unknown scattered field Z =M (c]c°)nTo•r °l)(c,,,"In
expansion coefficients, R(4) and R)(4) are the even (c odd j=

anRo ar the even and odd - (28)
modified Mathieu functions of the fourth kind. Similarly, Y Mo(c,, [,co)Ao. RRro, , - (C-
the transmitted electric field inside the cylinder for ý < M o=0 mRCbm~ o °'• ) R/ ](crOa)
can be written as The scattered near and far fields for the TM and TE cases

can be calculated once the scattered fields expansion
coefficients are known. The far scattered field expressions
can be obtained as follows
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S�I -jkop .m koa=2.1. Fig. 3 illustrates the results obtained in [16] for

E: e xj`[B' S, +c 'S.(,q](
Sem 17) + m (, 2 the radial Mathieu function of the first kind and zero order

0  with respect to u for different values of q, and presented

Hs .= J.e-jkop Jm[B TESS B,,+BES, (co,77)] (30) here to validate the accuracy of the computer code. Finally,
Hs p m (com Figs. 4-13 present a collection of data for Mathieu functions

Far Field data are usually expressed in terms of the (radial and angular) of complex arguments. The Fourier
scattering cross section per unit length, i.e., the echo width, expansion coefficients of Mathieu functions for different
Fortthering TM s po tion cer unit idefnged, a e earguments are tabulated in Tables 1-4. These results should
For the TM polarization case it is defined as be very helpful for researchers solving problems in the

E12
E-M = 21p Jim I (31) elliptic coordinate system.

" E'- JE 5. Conclusions

Eq. (30) can be put in simpler form for the purpose of
computation as follows The theory for calculating the angular and radial Mathieu

CT functions of complex arguments has been outlined. The
=.jm[B,.S,.(co,77)+BomSom(Co,i7)] (32) computed backscattered echo width of a lossy dielectric

T elliptic cylinder was compared with the special case of lossy
circular and weakly lossy elliptic cylinders and the results

4. Numerical Results are in complete agreement. Selected numerical results for
Mathieu functions are plotted and tabulated for limited

To determine the accuracy of the computer program, the ranges due to limitation on space.
Fourier expansion coefficients of Mathieu functions are
computed. These results are in excellent agreement with ACKNOWLEDGEMENT
those given in [16] for the case of real positive argument q,
and the maximum difference was found to be 10"5. Also, to The authors wish to acknowledge the support provided by
verify the accuracy of the computer program for the case of the University of Sharjah, the United Arab Emirates
complex argument q, we solved the problem of University and the University of South Alabama. Also the
electromagnetic scattering by a lossy dielectric elliptic first and third authors wish to acknowledge King Fahd
cylinder since no results are available in the literature. The University of Petroleum and Minerals in Saudi Arabia
computed numerical results were compared with the special where the special case of Mathieu Functions of real
case of scattering by a lossy circular dielectric cylinder, and argument was treated in a project entitled "Propagation and
with electromagnetic scattering by weakly lossy multilayer Radiation from Elliptical Waveguide Partly Filled with
elliptic cylinder [23,261. Fig. I shows the numerical results Nonconfocal Dielectric," by H. Ragheb and A-K. Hamid,
of the scattered normalized echo width oa of a lossy 2000.
dielectric circular cylinder having a relative permittivity of
Cr = I--jl 1.3 and electrical radiuskoa = 3.33 for TM and 12

TE polarizations. These results compare very well with -T
those presented in [26]. In this case the circular cylinder 10° TM

1 0o [26] TM
was approximated using an axial ratio close to 1, and was 8.......TE

excited by an incident plane wave with 0j = 180'. 1 E [26] TE

Fig. 2 compares the back scattering normalized echo width - 6
koa(0)14 for a homogeneous elliptical cylinder with axial

4 ~
ratio a/b = 2 and C = 4.0. Two cases are studied; these

are the lossless cylinder case with e" = 0.0 and a weak loss 2

cylinder case where C = 0.6. The calculated results are in 0 .
very good agreement with those published in [23]. One can 0 30 60 90 120 150 180

easily recognize the reduction in the back scattering 0, degrees
normalized echo width due to the presence of a small loss. Figure 1: TM and TE Normalized backscattered echo width
This can be attributed to the fact that the weak loss material versus 0 of a lossy circular cylinder with k0a 3.33 and
absorbed part of the incident wave energy. Another clear
observation is the shift in of resonance location. For a free = 1- jl 1.3.

loss material, resonance is observed around koa =3.6, while
in the weak loss case the resonance has shifted to around
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Figure 2: TM Normalized backscattered echo width versus Figure 5: Imaginary part of radial Mathieu function of the
0 of a lossy dieletric elliptic cylinder with e,= 4, a/b=2 first kind and zero order vs u for different values of q.
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Figure 6: Real part of the radial Mathieu function of the first
Figure 3: Radial Mathieu function of the first kind and zero kind and zero order vs u for different values of q.
order vs u for different values of q.
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Figure 7: Imaginary part of the radial Mathieu function of

Figure 4: Real part of the radial Mathieu function of the first the first kind and zero order vs u for different values of
kind and zero order vs u for different values of complex q. complex q.
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Figure 8: Real part of the radial Mathieu function of the first Figure 11: Imaginary part of even periodic Mathieu function
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Table 1: Complex Fourier expansion coefficients of even- Table 3: Complex Fourier expansion coefficients of odd-

even Mathieu function ( A2k ) even Mathieu function (B22)2

A2r 2r
A2. B2.

m\r 0 2 m\r 2 10

q = 5 + JO Real Imag. Real Imag. q = 5 + jO Real Imag. Real Imag.

0 0.540612446 0 0.438737166 0 2 0.933429442 0 0.000033444 0

2 0.627115413 0 0.65364026 0 4 .0.354803915 0 0.000642976 0

4 0.14792709 0 -0.426578935 0 6 0.052963729 0 0.010784806 0

6 0.017848061 0 0.075885673 0 8 -0.004295885 0 0.13767512 0

q=5+j5 q=5+j5

0 0.49810151 0 0.314442843 0.171487341 2 0.870294564 0 0.0001303290.000002685

2 0.662750285 0.130176082 0.604942355 0 4 -0.396630117 -0.272694975 0.001280155 0.001222013

4 0.168770876 0.133382581 0.026159729 -0.59020582 6 0.028211436 0.099835145 0.000421242 0.021019319

6 0.010394981-0.034782531 -0.140969223 0.089859201 8 0.0053059 -0.01083967 0.132565552 0.136516812

q=10+jlO I q=10+jl0 I

0 -0.44951258 0.056260383 0.294924019 0.029961136 2 0.734255554 0 0.001900098 -0.000156527

2 0.694591697 0 -0.0594970990.255064311 4 -0.580164625 -0.25100546 0.009959144 0.008264692

4 0.296630326 -0.1058622110.746844887 0 6 0.137051442 0.19916337 0.00613628210.076604876

6 0.058531831 0.064924524 0.323904602 0.281747705 8 0.002015162-0.05259162 0.231256474 0.260037365

Table 2: Complex Fourier expansion coefficients of even- Table 4: Complex Fourier expansion coefficients of odd-odd

odd Mathieu function (A"+' Mathieu fnmction (Bt 72+l)
2m~l 2m+1A,2r+l 112r+l

2m+l •2m+l

m\r 1 3 m\r 1 3

q = 5 + jO Real Imag. Real Imag. q= 5 + jO Real Imag. Real Imag.

1 0.762463687 0 0.077685798 0 1 0.940019022 0 0.050382462 0

3 -0.63159632 0 0.30375103 0 3 0.336541963 0 0.297365513 0

5 0.139684806 0 0.927728396 0 5 0.055477529 0 0.931566996 0

7 0.014915596 0 -0.201706148 0 7 0.005089553 0 0.20219363 0

q=5+j5 q=5+j5

1 0.517275706 0.286011205 -0.041658559 0.131675807 1 0.904373155 0 0.016113831 0.092448918

3 0.765785524 0 0.239854654 0.290697818 0.389707951-0.145292103 0.268912553 0.288134908

5 0.197812838 0.153451695 0.878673205 0 0.057923929 0.074976514 0.87655541 0

7 0.007517743 0.03807304 -0.166961766 0.194677341 0.000091975 0.012224892-0.16648902 0.19678302

q=10+jl0 q=10+jl0

1 0.4333934170.130050198 0.666818493 0 0.852110863 0 0.0432838 0.203330605

3 0.775016392 0 0.494260893 0.299695541 0.460992769 -0.18202088 0.234907973 0.510680316

5 -0.373034841.0.201569455 -0.01872188 0.426395143 0.08340867710.142179121.0.74112692

7 0.054220182 0.106990887 0.18435886510.054869005 0.0811803_J7 0.009774806[0.031241644..8101-.8895
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